

(Physics)

4 Heat and Thermodynamics

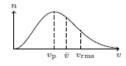
4.1: Heat and Temperature

Temp. scales: $F = 32 + \frac{9}{5}C$, K = C + 273.16

Ideal gas equation: pV = nRT, n: number of moles

van der Waals equation: $(p + \frac{a}{V^2})(V - b) = nRT$

Thermal expansion: $L = L_0(1 + \alpha \Delta T)$,


 $A = A_0(1 + \beta \Delta T), V = V_0(1 + \gamma \Delta T), \gamma = 2\beta = 3\alpha$

Thermal stress of a material: $\frac{F}{A} = Y \frac{\Delta l}{l}$

4.2: Kinetic Theory of Gases

General: $M = mN_A$, $k = R/N_A$

Maxwell distribution of speed:

RMS speed:
$$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

Average speed:
$$\bar{v} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$$

Most probable speed:
$$v_p = \sqrt{\frac{2kT}{m}}$$

Pressure: $p = \frac{1}{3}\rho v_{rms}^2$

Equipartition of energy: $K = \frac{1}{2}kT$ for each degree of freedom. Thus, $K = \frac{f}{2}kT$ for molecule having f degrees of freedoms.

Internal energy of n moles of an ideal gas is $U = \frac{f}{2}nRT$.

4.3: Specific Heat

Specific heat: $s = \frac{Q}{m\Delta T}$

Latent heat: L = Q/m

Specific heat at constant volume: $C_v = \frac{\Delta Q}{n\Delta T}\Big|_{v}$

Specific heat at constant pressure: $C_p = \frac{\Delta Q}{n\Delta T}|_{\perp}$

Relation between C_p and C_v : $C_p - C_v = R$

Ratio of specific heats: $\gamma = C_p/C_v$

Relation between U and C_v : $\Delta U = nC_v\Delta T$

Specific heat of gas mixture:

$$C_v = \frac{n_1 C_{v1} + n_2 C_{v2}}{n_1 + n_2}, \quad \gamma = \frac{n_1 C_{p1} + n_2 C_{p2}}{n_1 C_{v1} + n_2 C_{v2}}$$

Molar internal energy of an ideal gas: $U = \frac{f}{2}RT$, f = 3 for monatomic and f = 5 for diatomic gas.

4.4: Theromodynamic Processes

First law of thermodynamics: $\Delta Q = \Delta U + \Delta W$

Work done by the gas:

$$\Delta W = p\Delta V$$
, $W = \int_{V_4}^{V_2} p dV$

$$W_{\rm isothermal} = nRT \ln \left(\frac{V_2}{V_1} \right)$$

$$W_{\text{isobaric}} = p(V_2 - V_1)$$

$$W_{\rm adiabatic} = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$$

$$W_{\text{isochoric}} = 0$$

Efficiency of the heat engine:

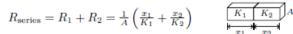
$$\eta = \frac{\text{work done by the engine}}{\text{heat supplied to it}} = \frac{Q_1 - Q_2}{Q_1}$$

$$\eta_{\text{carnot}} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

Coeff. of performance of refrigerator:

$$COP = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$$

Entropy: $\Delta S = \frac{\Delta Q}{T}$, $S_f - S_i = \int_i^f \frac{\Delta Q}{T}$


Const.
$$T : \Delta S = \frac{Q}{T}$$
, Varying $T : \Delta S = ms \ln \frac{T_f}{T_s}$

Adiabatic process: $\Delta Q = 0$, $pV^{\gamma} = \text{constant}$

4.5: Heat Transfer

Conduction: $\frac{\Delta Q}{\Delta t} = -KA\frac{\Delta T}{T}$

Thermal resistance: $R = \frac{x}{KA}$

$$\frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{x} \left(K_1 A_1 + K_2 A_2 \right)$$

Kirchhoff's Law: $\frac{\text{emissive power}}{\text{absorptive power}} = \frac{E_{\text{body}}}{a_{\text{body}}} = E_{\text{blackbody}}$

Wien's displacement law: $\lambda_m T = b$

Stefan-Boltzmann law: $\frac{\Delta Q}{\Delta t} = \sigma e A T^4$

Newton's law of cooling: $\frac{dT}{dt} = -bA(T - T_0)$

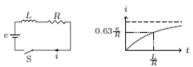
5.7: Electromagnetic Induction

Magnetic flux: $\phi = \oint \vec{B} \cdot d\vec{S}$

Faraday's law: $e = -\frac{d\phi}{dt}$

Lenz's Law: Induced current create a B-field that opposes the change in magnetic flux.

Motional emf: e = Blv



Self inductance: $\phi = Li$, $e = -L\frac{di}{dt}$

Self inductance of a solenoid: $L = \mu_0 n^2 (\pi r^2 l)$

Growth of current in LR circuit: $i = \frac{e}{R} \left[1 - e^{-\frac{t}{L/R}} \right]$

Decay of current in LR circuit: $i = i_0 e^{-\frac{t}{L/R}}$

Time constant of LR circuit: $\tau = L/R$

Energy stored in an inductor: $U = \frac{1}{2}Li^2$

Energy density of B field: $u = \frac{U}{V} = \frac{B^2}{2\mu_0}$

Mutual inductance: $\phi = Mi$, $e = -M \frac{di}{dt}$

EMF induced in a rotating coil: $e = NAB\omega \sin \omega t$

Alternating current:

$$i = i_0 \sin(\omega t + \phi), \quad T = 2\pi/\omega$$

Average current in AC: $\bar{i} = \frac{1}{T} \int_0^T i \, dt = 0$

RMS current: $i_{\text{rms}} = \left[\frac{1}{T} \int_0^T i^2 dt\right]^{1/2} = \frac{i_0}{\sqrt{2}}$

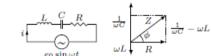
Energy: $E = i_{rms}^2 RT$

Capacitive reactance: $X_c = \frac{1}{\omega C}$

Inductive reactance: $X_L = \omega L$

Imepedance: $Z = e_0/i_0$

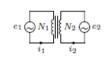
RC circuit:


$$Z = \sqrt{R^2 + (1/\omega C)^2}$$
, $\tan \phi = \frac{1}{\omega CR}$

LR circuit:

$$Z = \sqrt{R^2 + \omega^2 L^2}$$
, $\tan \phi = \frac{\omega L}{R}$

LCR Circuit:



$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}, \quad \tan \phi = \frac{\frac{1}{\omega C} - \omega L}{R}$$

$$\nu_{\text{resonance}} = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

Power factor: $P = e_{rms}i_{rms}\cos\phi$

Transformer: $\frac{N_1}{N_2} = \frac{e_1}{e_2}$, $e_1 i_1 = e_2 i_2$

Speed of the EM waves in vacuum: $c = 1/\sqrt{\mu_0 \epsilon_0}$